As equações do 2º grau, ou seja, equações em que aparece uma incógnita ao quadrado (x2, y2,...).
As equações do 2º grau são da forma ax2+bx+c=0 em que a, b e c são números reais em que a é diferente de zero.
Para quem estuda a equação do 2º grau deverá também saber que:
- c é o termo independente de x
- b é o coeficiente de x
- a é o coeficiente de x2
Dizer o porque é que o "a" tem que ser diferente de "zero".
As equações em que todos os coeficientes são diferentes de zero dizem-se COMPLETAS e as que têm um ou dois coeficientes iguais a zero dizem-se INCOMPLETAS.
EQUAÇÃO INCOMPLETAS
Exemplos:
1) x² - 25 = 0
x² = 25
x = √25
x = 5
logo V= (+5 e -5)
2) 2x² - 18 = 0
2x² = 18
x² = 18/2
x² = 9
x = √9
x = 3
logo V= (-3 e +3)
3) 7x² - 14 = 0
7x² = 14
x² = 14/7
x² = 2
x = √2
logo V = (-√2 e +√2)
4) x²+ 25 = 0
x² = -25
x = √-25
x² = 25
x = √25
x = 5
logo V= (+5 e -5)
2) 2x² - 18 = 0
2x² = 18
x² = 18/2
x² = 9
x = √9
x = 3
logo V= (-3 e +3)
3) 7x² - 14 = 0
7x² = 14
x² = 14/7
x² = 2
x = √2
logo V = (-√2 e +√2)
4) x²+ 25 = 0
x² = -25
x = √-25
1) Resolva as seguintes equações do 2° grau
a) x² - 49 = 0 (R: -7 e +7)
b) x² = 1 (R: +1 e -1)
c) 2x² - 50 = 0 (R: 5 e -5)
d) 7x² - 7 = 0 (R: 1 e -1)
e) 5x² - 15 = 0 (R: √3 e -√3)
f) 21 = 7x² (R: √3 e -√3)
g) 5x² + 20 = 0 (R: vazio)
a) x² - 49 = 0 (R: -7 e +7)
b) x² = 1 (R: +1 e -1)
c) 2x² - 50 = 0 (R: 5 e -5)
d) 7x² - 7 = 0 (R: 1 e -1)
e) 5x² - 15 = 0 (R: √3 e -√3)
f) 21 = 7x² (R: √3 e -√3)
g) 5x² + 20 = 0 (R: vazio)
EQUAÇÕES COMPLETA
Formula BHASKARA
Δ = b²- 4ac é o discriminante da equação.
Para esse discriminante Δ, há três possíveis situações:
1) Δ > 0 , a equação te duas raízes reais e diferentes.
2) Δ = 0, a equação tem uma raiz.
3) Δ < 0 , a equação não tem raízes reais.
1) Identificar os coeficientes: a = 1, b = -5, c = 6
2) Escrever o discriminante Δ = b²-4ac.
3) Calcular Δ = (-5)² -4×1×6 = 25-24 = 1
Exemplos:
1) 2 x² + 7x + 5 = 0, onde a = 2, b = 7 e c = 5
2) 3 x² + x + 2 = 0, onde a = 3 , b = 1 e c = 2
3) x² -7 x + 10 = 0, onde a = 1, b = -7 e c = 10
4) 5x² - x -3 = 0, onde a = 5, b = -1 e c = -3
2) 3 x² + x + 2 = 0, onde a = 3 , b = 1 e c = 2
3) x² -7 x + 10 = 0, onde a = 1, b = -7 e c = 10
4) 5x² - x -3 = 0, onde a = 5, b = -1 e c = -3
1. Calcular o discriminante de cada equação e analisar as raízes em cada caso:
a) x² + 9 x + 8 = 0 (R:-1 e -8)
b) 9 x² - 24 x + 16 = 0 (R:4/3)
c) x² - 2 x + 4 = 0 (vazio)
d) 3 x² - 15 x + 12 = 0 (R: 1 e 4)
e) 10 x² + 72 x - 64 = 0 (R:-8 e 4/5)
e) 5x² - 3x - 2 = 0 (R: 1 e -2/5)
f) x² - 10x + 25 = 0 (R: 5)
g) x² - x - 20 = 0 (R: 5 e -4)
h) x² - 3x -4 = 0 (R: 4 e -1)
i) x² - 8x + 7 = 0 (R: 7 e 1)
b) 9 x² - 24 x + 16 = 0 (R:4/3)
c) x² - 2 x + 4 = 0 (vazio)
d) 3 x² - 15 x + 12 = 0 (R: 1 e 4)
e) 10 x² + 72 x - 64 = 0 (R:-8 e 4/5)
e) 5x² - 3x - 2 = 0 (R: 1 e -2/5)
f) x² - 10x + 25 = 0 (R: 5)
g) x² - x - 20 = 0 (R: 5 e -4)
h) x² - 3x -4 = 0 (R: 4 e -1)
i) x² - 8x + 7 = 0 (R: 7 e 1)
EQUAÇÃO FRACIONÁRIA DO 2º GRAU
Exemplos:
1) Resolva as equações do 2ºgrau em R.
Quando os alunos descobrem o objetivo das equações, acaba acontecendo uma
ResponderExcluirtransformação na visão dos alunos, pois o que antes era visto como fórmulas e cálculos
imensos passam a ser vistos como estratégias para se conseguir chegar a um propósito. Dessa
forma, o aluno passa a desenvolver o gosto pelos conteúdos matemáticos, pois percebem sua
importância.
A resolução de uma equação do segundo grau consiste em obtermos os possíveis valores reais para a incógnita, que torne a sentença matemática uma equação verdadeira. Tais valores são a raiz da equação.
ResponderExcluir